
File Format Conventions for the SimBio Project

Frithjof Kruggel & Markus Svensén

Max-Planck-Institute of Cognitive Neuroscience

Stephanstraße 1, 04103 Leipzig, Germany

e-mail: {kruggel,svensen}@cns.mpg.de

Version 1.3 (February 21, 2002):

Added convention on implicit connectivity in graphs, altered storage convention for

graph attribute images, added ncomponents as compulsory image attribute, included a

definition for sparse attribute images for graphs.

Version 1.2 (July 13, 2000):

XML references removed, Knee coordinate system added, signal data sets defined, graph

attribute image definition included.

The SimBio environment provides tools for bio-numerical simulations using finite- element mod-

elling techniques. To ensure an efficient data flow across SimBio tools, a versatile file format is
required which allows a mixed storage of volumetric images and meshes in a single file. This docu-

ment provides a description of a suitable format and suggests conventions required for a successful
application in the target domain.

General Terms: SimBio environment, file formats, coordinate conventions, Vista toolkit

1. INTRODUCTION

This document describes file format conventions for SimBio tools [5]. It is assumed
to be relevant for SimBio software developers involved in work packages 1 and 3-6.
Because SimBio tools will operate on medical data, some additional conventions
are required to ensure a reliable use of the tools and to ease communication with
users in the target domain.

It is agreed that most SimBio tools use the Vista file format for data storage to
provide a maximum compatibility between program modules. Providers of other
SimBio tools may convert from their data format to Vista (or vice versa), based
on the description in this document. Example Vista data sets conforming to these
conventions will be provided on the SimBio web-site.

Vista was developed as a toolkit for computer vision research by the University
of British Columbia in 1994 and released to the public domain [1]. The Vista data
format is suggested for the following reasons: The C source code is available [6],
well documented, easily portable, tested and stable. The file format is machine-
independent, very efficient, versatile and easily extendible. Three SimBio partners
have significant amount of experience with using these tools.

A Vista data file can contain a variety of different sorts of objects, images and
graphs being the most interesting for SimBio. A file’s contents are organised as a
list of attributes, each comprising both an attribute name and an attribute value.

2 · F. Kruggel & M. Svensén

The attribute name is an alphanumeric string. The attribute value may have one
of several forms depending on whether the value is a number, a string, a keyword,
a nested list of attributes, an image, or some other object.

2. COORDINATE SYSTEMS

Although the definition of coordinate systems does not strictly belong into a doc-
ument on file formats, the medical application domain requires to introduce such
definitions, which are implicitly used in the format. To achieve clarity with respect
to this point, we include coordinate system definitions for the SimBio bodyparts-
of-interest in this document.

To ease orientation when visualising data sets of the human head, we suggest to
align the head with the stereotactical coordinate system [4], e.g. by a procedure
outlined in [2]. This convention will map an axial slice of the body (see definition
below) to the x-y plane, with the x axis running from the left to the right body
side, the y axis from front to back, the z axis from head to feet.

For the knee, we suggest to follow the conventions introduced by MacWilliams et
al. [3]: the x axis is parallel to the long axis of the femur, the y axis is parallel to
the anterior-posterior direction, and the z axis parallel to the left-right direction.
The origin of the coordinate system is in the center of the joint.

3. IMAGE FORMAT

The Vista image format is most efficient for storing data defined on regular grids.
An entry on this grid is called a voxel and may contain a scalar-, a vector- or tensor-
valued quantity in different pre-defined number representations. Image attributes
which provide a minimal description of the grid and the data representation are
generated automatically by the Vista library routines (and thus called ”automatic
attributes”).

Medical imaging data must be further qualified by additional attributes, which
are listed in the section ”Compulsory Attributes”. Although none of the SimBio
tools should rely on the presence of these attributes (i.e., provide reasonable de-
faults), their inclusion is necessary to allow a reliable use of medical imaging data.

Any number of optional attributes may be added. Note that this mechanism
may be used to communicate information from one routine to another (such as a
transformation matrix, material constants etc.).

3.1 Automatic Attributes

The three voxel dimensions of an image are called band, row, and column. The
band dimension can serve a variety of purposes, including representing such things
as the color channels of an RGB image, vector- or tensor-valued data. The re-
maining dimensions, row and column, index pixels by their vertical and horizontal
coordinates. Vista’s convention is to number rows and columns from the upper left
pixel, which is at row 0, column 0.

The following Vista attributes are automatically generated when allocating a
Vista image structure:

—data: an unsigned integer, points to the first byte of the data of this image, as
counted from the end of the header.

SimBio File Formats · 3

—length: an unsigned integer, denotes the number of image data bytes.
—nbands: a non-zero unsigned integer, denotes the total number of 2D slices (the

z coordinate). If nbands == 1, this attribute may be left out.
—nframes: a non-zero unsigned integer, denotes the number of 2D slice packages.

If voxels represent scalar quantities, the number of frames equals the number of
bands, in which case this attribute may be omitted. For vector- or tensor-valued
quantities, a set of consecutive bands are collected as a single frame.
Example: a 3D RGB image is stored as a set of 2D frames, where each frame
consists of three slices, representing the red, green and blue components. Thus,
nbands = nframes * 3.

—nrows: a non-zero unsigned integer, denotes image dimension in the y direction.
—ncolumns: a non-zero unsigned integer, denotes image dimension in the x direc-

tion
—repn: a string containing the voxel representation of the image:

bit represents an unsigned integer in the range [0,1]
ubyte represents an unsigned integer in the range [0,255]
sbyte represents a signed integer in the range [-128,127]
short represents a signed integer in 16 bits
long represents a signed integer in 32 bits
float represents a floating point number in 32 bits
double represents a floating point number in 64 bits

Example: the following header describes an image of dimensions 256 * 256 * 128
voxels in unsigned byte format:

image: image {
data: 0
length: 8388608
nbands: 256
nframes: 256
nrows: 256
ncolumns: 128
repn: ubyte

}

3.2 Compulsory Attributes

The following Vista attributes are compulsory for image data in the SimBio envi-
ronment. These attributes are required to describe medical image data:

—voxel: a string containing three floating point numbers denoting the real world
dimensions of a voxel in mm along the x-y-z axes.

—orientation: a string describing the relation of an image slice (the x-y plane)
to the body plane:

axial a slice is perpendicular to the body axis
coronal a slice is perpendicular to the fronto-occipital

(i.e., nose-to-back) axis
sagittal a slice is perpendicular to the left-right (i.e., ear-to-ear) axis

4 · F. Kruggel & M. Svensén

component repn # Representation component interp

(possible values)

scalar 1 a single component representing
scalar information

intensity, potential uV,
label, npartn, srcnode, elabel,

epartn, bccode

vector3 3 any 3D vector valued component

in the sequence x-y-z

force N, displacement mm,

dipole, curvature, gradient

tensor6 6 any rank 2 symmetric tensor val-
ued component in the sequence

xx-xy-xz-yy-yz-zz

conductivity, elasticity,
stress

rgb 3 three color channels in the se-

quence red-green-blue

complex 2 two components (real and imag-
inary)

Table 1. Possible image component representations and corresponding interpretations, with units
where applicable.

For head data sets aligned with the stereotactical coordinate system, the orien-
tation is axial by definition.

—convention: a string describing the relation of image and body w.r.t. the body
symmetry axis:

natural the left image side corresponds to the left body side
radiologic the left image side corresponds to the right body side

1

—patient: a string referencing a patient code. Note that the use of patient names
is deprecated here. This information is only used to relate image data at a certain
processing level to a specific subject.

—date: a string containing the date and time of the examination. This information
is only used to identify time-series examinations of subjects.

—component repn: a string defining the component representation of a voxel quan-
tity, as shown in table 1.

—component interp: a string providing a meaningful interpretation of a voxel
quantity and an optional measure unit, as shown in table 1. (This attribute is
compulsory only where applicable.)

—ncomponents: the number of elements in a voxel quantity, given in the column
headed ’#’ in table 1; may be replaced by ncolors in RGB images and can be
left out for images containing a single frame.

Example: the following header contains attributes describing voxel size, image
orientation and convention, patient code, examination date and component repre-
sentation and interpretation.

image: image {
...
voxel: "1.5 0.976562 0.976562"
orientation: axial
convention: natural

1Note that no default for the convention is provided. Thus, the coordinate system is either right-
handed (natural) or left-handed (radiologic).

SimBio File Formats · 5

patient: PS1T000410
date: "11:56:34 10 Apr 2000"
component_repn: scalar
component_interp: potential uV
}

3.3 Additional Optional Attributes

Any number of optional Vista attributes may be added to further qualify an image.
SimBio tools may simply ignore attributes which they do not recognize.

New attributes intended to communicate information between different SimBio
tools should be communicated to the authors, providing name, format and intended
use, for inclusion in a revision of this document.

3.4 Signal Images

Time-dependent information (such as EEG or MEG data) may also be stored as a
Vista image. Most typically, this will be a 2D image, where each row represents a
single channel, i.e., the columns represent the time points.

The following optional attributes characterize and identifies a Vista signal data
set:

—nChannels: the number of measurement channels (i.e., rows of the image). The
presence of this attribute discriminates images from signal data sets. For signal
data sets, the presence of this attribute is considered to be compulsory.

—sampleInterval: a number specifying the sampling interval in ms.
—origin: a number specifying the column corresponding to the trigger point.
—xAxisLabel: a string specifying the x coordinate label (e.g., ms).
—yAxisLabel: a string specifying the y coordinate label (e.g., µV).
—chanDDD: a string containing information regarding channel DDD: electrode label,

biosignal type, AD converter range, lower and upper limit of the frequency band.

Example: the following header contains the attribute of a 120-channels signal
image:

image: image {
...
nChannels: 20
sampleInterval: 2
origin: 0
xAxisLabel: ms
yAxisLabel: uV
chan00: " Fp1/G19 EEG 300 0.530 70.000 0.000 0.000"
chan01: " Fp2/G19 EEG 300 0.530 70.000 0.000 0.000"
...

}

The sampleInterval attribute may be also be present in non-signal 3D images
(not containing any other signal attributes), in which case it indicates that the third
(i.e. frame) dimension should be assumed to be located in the temporal rather than
the spatial domain (i.e. the 3D image represent a sequence of 2D images).

6 · F. Kruggel & M. Svensén

3.5 Naming of Image Objects

All the images appearing in the preceeding examples have appeared under the name
‘image’ (i.e. “image: image{...}”; here, the name is underlined). However,
using more informative names can make the human readable header of SimBio
files easier to read and also makes ‘filtering’ out images of a specific kind easier.
Assigning a specific name to an image means that this image must posses certain
properties in terms of its attribute values:

—IntensityImage: used to denote a scalar image where the element values
should be interpreted as intensities; component repn = scalar and
component interp = intensity.

—SegmentedImage: used to denote a segmented image where the elements have
integer values that should be interpreted as class labels;component repn =
scalar, component interp = label and repn = {bit, ubyte, sbyte,
short, long}.

—ComplexImage: used to denote an image where the elements have complex
values; component repn = complex and repn = { float, double }.

—RGBImage: used to denote an image where the elements have RGB values;
component repn = rgb.

—3DVectorField: used to denote a field of 3D vector values; component repn =
vector3.

—DisplacementField: used to denote a diplacement field; attributes as
3DVectorField and component interp = displacement.

—ForceField: used to denote a force field; attributes as 3DVectorField and
component interp = force.

—SymmR2TensorField: used to denote a field of symmetric rank2 tensor values;
component repn = tensor6.

—DipoleField: used to denote dipole moments in the brain; component repn =
vector3 and component interp = dipole nA.

Note that the naming of images is optional and that applications using the SimBio
file format are not required to recognize or be able to interpret the above names.
For that reason, compulsory attributes can not be ommitted from an image, even if
they would be uniquely determined by name of the image. There is no requirement
for applications using the SimBio file format to make sure that the name of an
image agrees with its attrbute values, but doing so would be considered as good
software engineering practice.

Additional names for images with specific properties can be added if needed.

3.6 Working with Vista Images

This excursion is intended to give a brief overview of some Vista routines to work
with the image format. Additional information about Vista images is compiled in
the manpage VImage.

SimBio File Formats · 7

Images are created with the command VCreateImage:

VImage im = VCreateImage(nz, ny, nx, VUByteRepn);

where nx, ny and nz give the image dimensions (note the ordering!) and VUByteRepn
corresponds to the ubyte voxel representation. In analogy, the line:

VDestroyImage(im);

releases storage allocated by the previous call.
An attribute is added to an existing image using:

char pat[MAX_NAME_LENGTH];

VSetAttr(VImageAttrList(im), "patient", NULL, VStringRepn, pat);

and, likewise, queried by:

VGetAttr(VImageAttrList(im), "patient", NULL, VStringRepn, pat);

An attribute is destroyed by the following operations:

VAttrListPosn posn;

if (VLookupAttr(list, "condition", &posn) == True)
VDeleteAttr(&posn);

Note that a newly created image may inherit a complete set of attributes by the
call:

VCopyImageAttrs(src, dst);

The Vattribute manpage provides more information about Vista attributes and
there usage.

A specific voxel may be accessed by one of the following mechanisms. A generic
function retrieves a value at a given position:

double v = VGetPixel(im, z, y, x);

The symmetric call VSetPixel(im, z, y, x, v) stores v at position (x, y, z).
Note that these functions are independent of the image representation, however,
some overhead due to the function call must be expected.

A more efficient method is to use a macro:

double v = (double)VPixel(im, z, y, x, VUByteRepn);

or a pointer:

VUByte ***p = VPixelArray(im, VUByteRepn);
double v = (double)p[z][y][x];

8 · F. Kruggel & M. Svensén

Images are being read from and written to files using the commands VReadFile
or VReadImages and VWriteFile or VWriteImages, respectively. These commands
operates on Vista attribute lists containing the images stored under their respective
names.

VAttrList outlist = VCreateAttrList();
VAppendAttr (outlist, "image", 0, VImageRepn, im);
FILE outfile = fopen("im.v", "w");
VWriteFile(outfile, outlist);
fclose(outfile);

4. GRAPH FORMAT

The Vista graph format may be used to store a general graph structure in a file. It
is the preferred format for storing data defined on irregular grids (such as surfaces
in 3D or finite element nets). A Vista graph is comprised of a list of nodes and
connections between nodes. Nodes and connections may have weights, connections
may be uni- or bidirectional in a graph. As for images, a graph may have an arbi-
trary list of associated attributes. Attributes which provide a minimal description
of the graph layout are generated automatically by the Vista library routines (and
thus called ”automatic attributes”).

A node consists of some book-keeping fields and some user-defined fields. Cus-
tomized node representations are instantiated by subclassing from the structure
VNodebaseStruct. Two restrictions are enforced for Vista graphs: all nodes in a
graph instance must have the same class (i.e., occupy the same amount of storage);
all user fields in a node must have the same representation.

A node in a graph may be referenced either by sequencing operations (i.e., iter-
ators), by walking along links, or by directly referencing entries in the node table.
Entries in the node table may be empty (e.g., as a result of a node deletion). In
order to distinguish between valid and invalid node references, the first entry (at
table position 0) is empty by definition, i.e., 0 denotes an invalid or empty node
reference.

In a sample application within SimBio, a single graph contains a set of vertices in
3D; links between nodes correspond to edges. Let us call such a structure a vertex
graph. While this graph is sufficient to represent a surface or volumetric mesh,
it is useful to add a second graph containing geometrical primitives. For surface
meshes, this primitive graph contains polygons as nodes, for volumetric meshes,
nodes represent cells (i.e., tetrahedra or hexahedra) of the finite element mesh.
Links between nodes denote neighborhood relationships between primitives: in the
case of surfaces, neighbors share edges, in the case of volumetric meshes, neighbors
share faces.

In the presence of a primitive graph only containing triangular, quadratic, tetra-
hedral or hexahedral primitive elements, it will be possible to allow these primitive
elements to also implicitly define the connectivity in the associated vertex graph,
where the explicit links in this case may be ommitted, leading to savings in terms
of storage.

The implicit links for the different primitive elements are shown in figure 1.
Note that, this also restricts the orientation of the primitive element in terms of

SimBio File Formats · 9

8
y

z

x

6 7

2

1

3

5

4

1 1

4
3

2 2

2

3

1

4

3

Fig. 1. The implicit connectivity and ordering of vertices in primitive elements. The vertex
numbers corresponds to the user defined fields of the primitive nodes (see sec. 4.6). For the

triangular and quadratic surface elements (left), the numbers also orders the vertices, which follow

a counter-clockwise ordering when the element is aligned with the x-y-plane and the frontside
facing in the direction of the positive z-axis of a right hand oriented coordinate system (the
positive z-axis pointing towards the reader). For the tetrahedral element (bottom right), the
orderings of the vertices along the sides of the element, when aligned with the x-y-plane and the

outside facing in the direction of the positive z-axis, are: (1, 2, 3), (2, 4, 3), (4, 1, 3), (1, 4, 2). For
the hexahedral element (top right), the orderings of the vertices along the sides of the element,
when aligned with the x-y-plane and the outside facing in the direction of the positive z-axis,
are: (1, 2, 3, 4), (8, 7, 6, 5), (4, 3, 7, 8), (5, 6, 2, 1), (2, 6, 7, 3), (5, 1, 4, 8). Note that, this ordering is
clockwise, in contrast to the other elements, where the ordering is counter-clockwise.

the spatial ordering of its vertices with respect to the coordinate system, as de-
fined in the caption of figure 1. Intuitively, this spatial ordering defines the front-
and backsides for surface elements and in- and outsides for volume elements. A
general, mathematically strict definition of these restrictions for hexahedral ele-
ments can be found in [7, sec. 3.5]. To use this implicit connectivity, the attribute
implicit links must be defined in the attribute list of the primitive graph with
the string value true. Implicitly defined links are, in contrast to explicitly defined
links, always bi-directional.

The correspondence between images and graphs is given by the following conven-
tion: Vertices represent points in the domain, primitives represent some subvolume
of the domain. Thus, an image may be considered as a mesh containing hexahedral
primitives with vertices on the corners of the hexahedra.

4.1 Automatic Attributes of General Graphs

Vista graphs have automatic attributes with keywords data, length and repn
which have the same meaning as for Vista images. In addition, the following at-
tributes are predefined for any graph:

—useWeights: a boolean variable denoting whether the nodes and links in the
graph contain additional weight fields. For SimBio application, most likely,
weights are not used.

10 · F. Kruggel & M. Svensén

—nnodes: an unsigned integer, denotes the number of nodes in a graph.
—nfields: a non-zero unsigned integer, denotes the number of fields of represen-

tation repn in the user portion of the node structure.

4.2 Compulsory Attributes of General Graphs

For SimBio applications, it is suggested to include the attributes patient, and
date, as defined for the image format, in all graph structures.

The attribute component interp contains a string defining the interpretation of
a node. For SimBio, the following values are of interest:

vertex this graph contains vertices
primitive this graph contains primitives

If there is only a single graph in a file, it is assumed to contain vertices.

4.3 Node Attributes of General Graphs

Vertex and primitive graphs together define a geometrical model of an object, in case
of SimBio, (a part of) a head or a knee. Typically, we are interested in describing
not only the geometry of such objects, but also other properties (e.g. material
properties), which vary across the geometrical model, and maybe associated with
either vertices or primitive elements.

We do this by storing the properties of interest as an attribute in the form of
a table, represented by a Vista image, where each column correspond to a unique
node in the graph (a vertex or a primitive node).

Example: part of a header for a primitive graph representing a volumetric mesh,
where the elasticity tensor associated with each volume element is stored in the
correspondingly labelled attribute image.

graph: graph {
...

nnodes: 10
nfields: 4
repn: long
component_interp: primitive
primitive_interp: volume
implicit_links: true
image: image {

data: 0
length: 240
nbands: 6
nframes: 1
nrows: 1
ncolumns: 10
ncomponents: 6
repn: float
component_repn: tensor6
component_interp: elasticity

}
}

SimBio File Formats · 11

Note that several node properties may represented this way, by separate attribute
images. Moreover, using attribute images with multiple frames, it will be possible to
represent temporally changing characteristics of a temporally constant geometrical
model.

Just like ordinary images, the attribute images needs certain attributes of their
own. In addition to the automatic image attributes (sec. 3.1), component repn
and component interp attribute are required to qualify the image content. Other
attributes may be deduced from the containing graph (e.g. patient and date) or
may not be applicable (e.g. voxel and orientation).

If the sampleInterval attribute is present and nframes is greater than one, the
frames are understood to contain a sequence of values. A special case of this occur
when the attribute image is a signal image (sec. 3.4).

Note that attribute images may also be used to store other attribute information,
which may be node specific or not, e.g. partitioning information for FE applications
and striping information for visualisation. These images usually contain informa-
tion which is specific to a single or a few closely connected applications and will
have unique attribute names. All applications supporting the SimBio file format
must be able to deal with the presence of such images, in the simplest case by just
ignoring them.

4.3.1 Sparse attribute images. Certain attribute values may be associated with
only a subset of the nodes in the graph. When number of nodes is large and the
subset of nodes that have attribute values associated with them is small, using an
attribute image with a column for each node can waste a lot of memory, especially
when the attribute values themselves are storage demanding, like vector or tensor
values.

For these cases, a dedicated sparse attribute image definition is available. This
consists of a Vista attribute list [1] containing two Vista images. The first image
is the reversed index image (ri-image) and the second the value image (v-image).
Both images have the same number of columns. The ri-image has an integer rep-
resentation (ubyte, sbyte, short, long) and all ‘voxels’ have strictly positive
values. The v-image has the same characteristics as ordinary attribute image, ex-
cept that it may have fewer columns than there are nodes in the associated graph.
The value stored in column i of the ri-image gives the index of the node in the
graph (starting from 1) to which the value stored in column i of the v-image be-
long. A sparse attribute image (i.e. the corresponding attribute list) should always
be stored under the name sparse image in the attribute list of the graph. In
the sparse attribute image, the ri-image should always be stored under the name
revidx image, whereas the v-image could have any name, but typically would have
one of the desciptive names from section 3.5.

The v-image may have the additional attribute empty value, which contains the
value, represented as a string with space a separator, associated with all nodes for
which the sparse attribute image does not specify a separate value.

12 · F. Kruggel & M. Svensén

Example: header for a vertex graph with a sparse attribute image.

graph: graph {
data: 0
length: 240
useWeights: 0
nnodes: 10
nfields: 4
repn: float
patient: "K. Rank"
date: "12:23:16 8 Jan 2002"
component_interp: vertex
sparse_image: {

revidx_image: image {
data: 240
length: 12
nrows: 1
ncolumns: 3
repn: long

}
ForceField: image {

data: 252
length: 36
nbands: 3
nframes: 3
nrows: 1
ncolumns: 3
repn: float
component_repn: vector3
component_interp: "force N"
ncomponents: 3
empty_value: "0.0 0.0 0.0"

}
}

}

4.4 Nodes in a Vertex Graph

In order to agree on how user-defined fields in a node are used in SimBio applica-
tions, the first field contains a type code. Currently, the following type codes have
been defined:

SimBio File Formats · 13

Type Usage Field # Fields

1 simple vertex 4 x y z
2 vertex + normal 7 x y z nx ny nz
3 vertex + normal

+ curvature 10 x y z nx ny nz cn cg cm
4 vertex + scalar 5 x y z s
5 vertex + normal

+ scalar 8 x y z nx ny nz s
6 vertex + normal

+ curvature + scalar 11 x y z nx ny nz cn cg cm s

Note that this table is easily extendible by definition of additional type code and
agreement on their usage.

Because all fields must have the same representation, the preferred data repre-
sentation for vertex graphs in SimBio applications is VFloat.

It is convenient to have vertex coordinates in real world dimensions (i.e., a voxel
attribute is not necessary). In addition, if images are to be used together with
vertex graphs, it is assumed that they live in the same coordinate frame.

4.5 Optional Attributes of Vertex Graphs

For SimBio applications, it is necessary to further qualify the information contained
in a graph.

—partition(s): the number of processors the application that is based on this
mesh will run on.

—vmlinestrip: attribute image containing containing pre-computed information
for visualisation.

—vertex interp: a string qualifying the vertex information. This attribute may
indicate that vertices are to be interpreted as electrode or SQUID positions,
current or force sources.
Example: vertex interp: electrode

—scalar interp: a string qualifying the scalar information. This attribute should
indicate the meaning and unit of the scalar.
Example: scalar interp: "voltage uV"

In order to interpret the information correctly (e.g., display electrodes by predefined
glyphs), these attributes should be considered as compulsive.

4.6 Nodes in a Primitive Graph

A node in a primitive graph represents a geometrical object in a mesh. The first
field (field 0) contains the number of vertices belonging to this primitive, subsequent
fields contain the references to the vertices in the table of the vertex graph.

Example: The primitive node containing the fields 3 57 1 14 denotes a triangle
referenced by nodes 57, 1, and 14 of the vertex graph.

It is possible to mix primitives (e.g., triangles and quadrilaterals) in a graph.
However, since only a single node type is allowed in a graph, all nodes must provide

14 · F. Kruggel & M. Svensén

the same number of fields. Because fields contain references to the vertex graph,
the preferred data representation for primitive graphs is VLong.

For SimBio applications, surface meshes may contain triangles and quadrilaterals,
volumetric meshes may consist of tetrahedra and hexahedra.

4.7 Compulsory Attributes of Primitive Graphs

In order to distinguish between surface and volumetric meshes, the presence of
following attribute is required:

—primitive interp: a string indicating the mesh type:
surface a surface mesh
volume a volumetric mesh

4.8 Optional Attributes of Primitive Graphs

—implicit links: if and only if this attribute present with the string value true,
the primitive graph defines implicit connections between the vertices in its cor-
responding vertex graph.

—vmlinestrip, vmpolystrip: attribute images containing containing pre-com-
puted information for visualisation.

4.9 Working with Vista Graphs

As for images, we now give a brief overview of some Vista routines to work with
the graph format. Complete information about Vista graphs is compiled in the
manpage VGraph.

Graphs are created with the command VCreateGraph:

VGraph vtx = VCreateGraph(nnodes, nfields, VFloatRepn, False);

where nnodes corresponds to the initial table length, nfields to the number of
fields of representation VFloat. The last argument indicates that weights are not
used in this graph. Note that the table may grow automatically when nodes are
added to the graph. The call VDestroyGraph(vtx) releases all storage allocated
for this graph. Attributes are added in a similar fashion as described for images:

VSetAttr(VGraphAttrList(vtx), "scalar_interp", NULL,
VStringRepn, "voltage uV");

Nodes are added to the graph by the call:

VNode node;

unsigned int ref = VGraphAddNode(vtx, node);

Note that the information in node is copied in the graph, so re-using (or deal-
locating) node is safe. The routine VGraphAddNode checks if a node containing
the same information was added before using a linear search through the table.
For certain situations this performance penalty may be avoided by using the call
VGraphAddNodeAt(vtx, node, ref), which places a node at the specified position.
Here, the specified position must be within the table.

SimBio File Formats · 15

A link is added between two nodes by the command:

VGraphAddLink(vtx, ref1, ref2);

Note that this link is uni-directional (i.e., from node ref1 to node ref2). A bi-
directional connection between the two nodes can be established by simply also
adding a link from node ref2 to node ref1:

VGraphAddLink(vtx, ref2, ref1);

The simplest way of traversing a graph is to use an iterator:

for (VNode node = VGraphFirstNode(vtx); node;
node = VGraphNextNode(vtx)) {

which is equivalent to:

for (unsigned int ref = 1; ref <= VGraphNNodes(vtx); ref++) {
VNode node = VGraphGetNode(vtx, ref);
if (node == 0) continue;
...

An alternative is to walk along the links of a node:

VNode node;

for (VAdjacency adj = node->adj; adj; adj = adj->next) {
unsigned int ref = adj->id;
VNode neighbor = VGraphGetNode(vtx, ref);
if (neighbor == 0) continue;
...

5. SUMMARY

The Vista toolkit defines a compact, efficient and machine-independent file format,
which is suitable to map data structures within the SimBio environment. Addi-
tional conventions are described in this document which are necessary for the target
application in the medical field.

REFERENCES

[1] Pope A.R., Lowe D.G. (1994) Vista: A software environment for computer vision research.

In Computer Vision and Pattern Recognition (CVPR’94), pp. 768-772. IEEE Press, Los

Alamitos.

[2] Kruggel F., von Cramon D.Y. (1999) Alignment of magnetic-resonance brain datasets with
the stereotactical coordinate system. Medical Image Analysis 3, 1-11.

[3] MacWilliams B.A., DesJardins J.D., Wilson D.R., Romero J., Chao E.Y.S. (1998) A repeat-

able alignment method and local coordinate description for knee joint testing and kinematic
measurement. J. Biomechanics 31, 947-950.

[4] Talairach J., Tournoux P. (1988) Co-Planar Stereotactic Atlas of the Human Brain. Thieme,

Stuttgart.

[5] The SimBio Consortium (2000) SimBio: A generic environment for bio-numerical simulation.
http://www.simbio.de.

[6] Pope A.R., Lowe D.G. (1998) The Vista toolkit:

http://www.cs.ubc.ca/nest/lci/vista/vista.html.

[7] Hughes T.J.R. (1987) The Finite Element Method, Prentice-Hall.

