MATLAB File Help: dml.enet View code for dml.enet Default Topics
dml.enet
  enet efficient elastic net algorithm.
 
    DESCRIPTION
    Fast implementation of elastic net linear and logistic regression by
    Friedman et al. Without arguments, this method automatically determines 
    the lambda path and uses cross-validation to find the best lambda. The
    parameter 'family' determines whether to use linear regression
    (gaussian) or logistic regression (binomial or multinomial). The mixing
    parameter alpha controls the influence of the 11 (alpha=1) and l2 regularizer
    (alpha = 0). Negative weights indicate the class with label 1. Positive
    weights indicate the class with label 2.
 
    REFERENCE
    Regularization paths for generalized linear models via coordinate descent 
    by Friedman et al.
 
    EXAMPLE
    X = randn(100,20); Y = [ones(50,1); 2*ones(50,1)]; 
    X(1:50,1:10) = X(1:50,1:10)+1; X(51:100,11:20) = X(51:100,11:20)+1;
    m = dml.enet('family','binomial');
    m = m.train(X,Y);
    Z = m.test(X);
 
    X = rand(15,20); Y = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3]'; X(1:5,:) = X(1:5,:)+1;
    m = dml.enet('family','multinomial');
    m = m.train(X,Y);
    Z = m.test(X);
 
    DEVELOPER
    Marcel van Gerven (m.vangerven@donders.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
enet efficient elastic net algorithm. 
Property Summary
alpha glmnet mixing parameter 
df degrees of freedom 
family gaussian, binomial, or multinomial 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
lambda used lambda(s) 
path lambda path followed when estimating decoding performance 
performance cross-validated decoding performance for elements on lambda path 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
validator cross-validator 
verbose whether or not to generate diagnostic output 
weights regression weights (offset last) 
Method Summary
  model returns 
  test  
  train handle multiple datasets