MATLAB File Help: dml.graphnet View code for dml.graphnet Default Topics
dml.graphnet
  graphnet native implementation of graphnet algorithm.
 
    DESCRIPTION
    Elastic net linear and logistic regression. Note that this algorithm
    allows for the GraphNet generalization that allows coupling between
    features. Requires specification of the lasso penalty term L1 and
    (optionally) the ridge penalty term L2. The latter can also be a matrix
    to allow coupling of variables.
 
    REFERENCE Regularization paths for generalized linear models via
    coordinate descent by Friedman et al.
 
    Grosenick L, Klingenberg B, Knutson B. A family of interpretable
    multivariate models for regression and classification of whole-brain
    fMRI data. stanford.edu.
 
    EXAMPLE 
    X = rand(10,20); Y = [1 1 1 1 1 2 2 2 2 2]'; 
    m = dml.graphnet('family','binomial','L1',0.1);
    m = m.train(X,Y); 
    Z = m.test(X);
 
    DEVELOPER
    Marcel van Gerven (m.vangerven@donders.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
graphnet native implementation of graphnet algorithm. 
Property Summary
L1 lasso penalty 
L2 nfeatures x nfeatures ridge penalty  
conv plot of the convergence of the parameters sum(abs(beta-betaold)); 
df degrees of freedom 
family gaussian, binomial, or multinomial 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
maxiter maximum number of iterations for native elastic net 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
tolerance tolerance in the error for native elastic net 
verbose whether or not to generate diagnostic output 
weights regression weights (offset last) 
Method Summary
Static   lambdapath  
Static   laplacian return matrix Laplacian for a multidimensional array of size dims and strength s 
  model returns  
  test  
  train handle multiple datasets