MATLAB File Help: dml.hmm View code for dml.hmm Default Topics
dml.hmm
  hmm Hidden Markov model with continuous observations.
  
  DESCRIPTION
  input X is of size repetitions x features x timepoints
  note:
  - nhidden specifies the number of hidden states; this is used only when Y
    is absent or NaN
 
  EXAMPLE
  rand('seed',3); randn('seed',3);
  
  nsamples = 1000; ncov = 10; ncycles = 10;
  Y = repmat([ones(100,1); 2*ones(100,1)],[5 1]);
  
  k = dml.hmm('verbose',true);
  X = repmat(Y,[1 ncov]); X(X(:)==1) = randn(1,sum(X(:)==1)); X(X(:)==2) = 0.1+3*randn(1,sum(X(:)==2));
  X = reshape(X',[1 size(X,2) size(X,1)]);
  Y = reshape(Y',[1 size(Y,2) size(Y,1)]);
  k = k.train(X,Y); % everything assumed observed
  Z = k.test(X);
  plot(squeeze(Y),'k-');
  hold on;
  plot(squeeze(Z),'ro');
 
  REFERENCES
  Pattern Recognition and Machine Learning, Bishop
  BNT toolbox
 
  DEVELOPER
  Marcel van Gerven (m.vangerven@donders.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
hmm Hidden Markov model with continuous observations. 
Property Summary
LL likelihood 
Sigma conditional covariance 
cov_prior prior on the covariance matrix (diagonal term) 
cov_type covariance type (full, diag, spherical) 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
maxiter max number of em iterations 
mixmat mixing matrix 
mu conditional means 
nhidden number of hidden states; state assumed observed if hidden 
nmixture number of gaussian mixture components 
prior class prior 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
tied_cov tie the covariances 
transmat transition matrix 
verbose whether or not to generate diagnostic output 
Method Summary
  likelihood return the log likelihood of an observed sequence 
  model this method does not return a model 
  test Viterbi decoding; outputs most likely path per sequence 
  train data represented as repetitions x features x timepoints