MATLAB File Help: dml.sopls View code for dml.sopls Default Topics
dml.sopls
  sopls sparse orthonormalized partial least squares.
 
    DESCRIPTION
 
    sopls estimates a model of the form Z = PX + C, Y = QZ.
 
    lambda_min specifies the fraction of the maximal lambda value (computed
    by glmnet) for which the output will be returned. 
 
    alpha specifies the balance between ridge regression (alpha=0) and lasso
    regression (alpha=1).
 
    The number of steps taken to traverse the regularization path is given by nlambda.
  
    if nlambda=0 then standard partial least squares will be used.
 
    pmax specifies the maximum number of variables included in the solution.
  
    nhidden specifies the number of used components. If it is decreased
    during testing then the restricted number of components will be used
    (only in case of sparse partial least squares!)
 
    EXAMPLE
    
    load data;
    p = dml.sopls('nhidden',3,'verbose',true);
    p = p.train(X(1:40,1:10),I(1:40,:));
    r = p.test(X(41:50,1:10));
    for j=1:10, subplot(2,5,j); imagesc(reshape(r(j,:),[16 16])); colormap(gray); axis off, end
    figure
    for j=1:10, subplot(2,5,j); imagesc(reshape(I(40+j,:),[16 16])); colormap(gray); axis off, end
 
    v = dml.enet.lambdapath(X,Y,'gaussian',50,1e-3);
    m = dml.gridsearch('cv',dml.crossvalidator('type','split','stat','correlation','mva',dml.enet('family','gaussian','restart',false)),'vars','L1','vals',v,'verbose',true);
    p = dml.sopls('nhidden',3,'verbose',true,'regularizer',m);
    p = p.train(X(1:40,1:10),I(1:40,:));
    r = p.test(X(41:50,1:10));
    for j=1:10, subplot(2,5,j); imagesc(reshape(r(j,:),[16 16])); colormap(gray); axis off, end
    figure
    for j=1:10, subplot(2,5,j); imagesc(reshape(I(40+j,:),[16 16])); colormap(gray); axis off, end
 
    REFERENCE
   
    When using this method please refer to the following:
 
    van Gerven MAJ, Heskes T. Sparse Orthonormalized Partial Least Squares. In: BNAIC. 2010. 
 
    DEVELOPER
    Marcel van Gerven (m.vangerven@donders.ru.nl), Tom Heskes (tomh@cs.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
sopls sparse orthonormalized partial least squares. 
Property Summary
C hidden bias vector 
G trained ft_mv_glmnet objects 
P input matrix 
Q output matrix 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
method 'pls' (non-sparse), 'opls' (non-sparse orthonormal), 'sopls' (sparse opls) 
nhidden number of hidden units; estimated using leave-one-out if an array 
regularizer default regularizer 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
score leave-one-out score 
verbose whether or not to generate diagnostic output 
Method Summary
  model returns 
  test  
  train