MATLAB File Help: dml.circreg View code for dml.circreg Default Topics
dml.circreg
  circreg circular regression method.
 
    DESCRIPTION
    Circular regression using the Fisher and Lee model.
 
    EXAMPLE
 
    % generate data using fixed mean mu and concentration kappa
    X = randn(1000,3);
    c = dml.circreg('mu',0,'kappa',100);
    Y = c.sample(X);
    ix = (-pi:0.1:pi)';
    x = histc(Y,ix); x = x ./ sum(x);
    polar(ix,1+x);
 
    % check estimation
    c = dml.circreg('mode','none','verbose',true);
    c = c.train([],Y);
    disp([c.mu c.kappa]);
 
    % generate data using X-dependent mean mu and concentration kappa
    X = randn(1000,3);
    c = dml.circreg('mu',0,'beta',[-1 0 1]','kappa',100);
    Y = c.sample(X);
 
    % check estimation
    c = dml.circreg('mode','mean','verbose',true);
    c = c.train(X,Y);
    disp([c.mu c.kappa c.beta']);
 
    DEVELOPER
    Marcel van Gerven (m.vangerven@donders.ru.nl)
    Ali Bahramisharfi (ali@cs.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
circreg circular regression method. 
Property Summary
beta regression coefficients for the mean 
gamma regression coefficients for the concentration 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
inner maximum number of inner loop iterations in concentration/mixed estimation 
kappa concentration parameter of von Mises distribution 
lambda regularization parameter for the mean (only defined for gradient descent) 
likelihood stored loglikelihood 
method method used to estimate model (1=standard, 2=generalized method of moments, 3=second harmonics) 
mu intercept of von Mises distribution 
outer maximum number of outer loop iterations in mixed estimation  
repeat number of repeats for gradient descent (multiple local maxima) 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
tol smallest update step in concentration/mixed estimation 
verbose whether or not to generate diagnostic output 
Method Summary
  loglik log likelihood up to a constant 
  model this method does not return a model 
  sample from a von Mises distribution (pp. 49 Fisher and Lee) 
  test estimate the angle using intercept and link function 
  train determine intercept and regression coefficients  
  train_concentration estimate concentration using regressors 
  train_mean estimate mean using regressors 
  train_mixed estimate mean and concentration using regressors 
  train_none don't regress; just estimate mean and concentration