MATLAB File Help: dml.garrote View code for dml.garrote Default Topics
dml.garrote
  garrote variational garrote.
 
    DESCRIPTION
    Variational garrote implementation of sparse regression
 
    REFERENCE
    http://arxiv.org/abs/1109.0486
 
    EXAMPLE
    n=10; % input dimension 
    p=100; % number of samples
    pt = 2*n; 
    ns = round(.05*n);  % sparsity level
    betax=1;            % inverse noise in the input
    betah=1;            % inverse noise response variance
    snonzero=randperm(n);
    snonzero(ns+1:end) = [];
    w=sparse(1,n);
    w(snonzero)=1;
    sigma=sqrt(1/betah);    % noise response
    sigmax=sqrt(1/betax);    % noise input  
    x=sigmax*randn(n,p);
    x=x-mean(x,2)*ones(1,p);
    dx=sqrt(1/p*sum(x.^2,2));
    x=x./(dx*ones(1,p));
    y=w*x+sigma*randn(1,p);
    y=y-mean(y);
    xt=sigmax*randn(n,pt);
    xt=xt-mean(xt,2)*ones(1,pt);
    yt=w*xt+sigma*randn(1,pt);
    yt=yt-mean(yt);
    m = dml.garrote('valset',20);
    m = m.train(x',y');
    yp = m.test(xt');
    plot([yt; yp]');
 
    DEVELOPERS
    Bert Kappen (b.kappen@science.ru.nl)
    Vicenc Gomez (v.gomez@science.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
garrote variational garrote. 
Property Summary
beta_max increases gamma values until beta=beta_max (1e3) 
dmmin convergence threshold for mean field error (1e-12) 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
max_sum_m increases gamma values until sum(m)=max_sum_m (n/2) 
maxiter maximum number of iterations for optimization for fixed gamma (1e4) 
method method for optimization 'dual' or 'regression' for fixed gamma ('dual') 
n_gamma number of gamma values to scan (50) 
res learnt parameters 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
valset part of the training set used for validation (0.1*p) 
verbose whether or not to generate diagnostic output 
Method Summary
  model this method does not return a model 
  test return predicted Y based on input X 
  train