MATLAB File Help: dml.glmnet | View code for dml.glmnet | Default Topics |
glmnet efficient elastic net algorithm.
DESCRIPTION
Fast implementation of elastic net linear and logistic regression by
Friedman et al. Without arguments, this method automatically determines
the lambda path and uses cross-validation to find the best lambda. The
parameter 'family' determines whether to use linear regression
(gaussian) or logistic regression (binomial or multinomial). The mixing
parameter alpha controls the influence of the 11 (alpha=1) and l2 regularizer
(alpha = 0).
REFERENCE
Regularization paths for generalized linear models via coordinate descent
by Friedman et al.
EXAMPLE
X = rand(10,20); Y = [1 1 1 1 1 2 2 2 2 2]';
m = dml.glmnet('family','binomial');
m = m.train(X,Y);
Z = m.test(X);
X = rand(15,20); Y = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3]'; X(1:5,:) = X(1:5,:)+1;
m = dml.glmnet('family','multinomial');
m = m.train(X,Y);
Z = m.test(X);
DEVELOPER
Marcel van Gerven (m.vangerven@donders.ru.nl)
Superclasses | dml.method |
Sealed | false |
Construct on load | false |
glmnet | efficient elastic net algorithm. |
alpha | glmnet mixing parameter |
df | degrees of freedom |
family | gaussian, binomial, or multinomial |
indims | dimensions of the input data (excluding the trial dim and time dim in time series data) |
lambda | used lambda(s) |
path | lambda path followed when estimating decoding performance |
performance | cross-validated decoding performance for elements on lambda path |
restart | when false, starts at the previously learned parameters; needed for online learning and grid search |
validator | cross-validator |
verbose | whether or not to generate diagnostic output |
weights | regression weights (offset last) |
model | returns | |
test | ||
train | handle multiple datasets |