MATLAB File Help: dml.slda View code for dml.slda Default Topics
dml.slda
  slda shrinkage linear discriminant analysis.
 
    DESCRIPTION
    Uses shrinkage to estimate covariance matrices:
    'diaguneq' : Target D of Schafer and Strimmer; Software of Strimmer,
                 covshrinkKPM(X(Y==k,:),0) would give the same result
                 (default)
    'diagcommon' : Target B of Schafer and Strimmer as in Blankertz et al 
 
    REFERENCE
    J. Schafer and K. Strimmer (2005) A Shrinkage Approach to Large-Scale
    Covariance Matrix Estimation and Implications for Functional Genomics
   
    Blankertz B, Lemm S, Treder M, Haufe S, Müller K-R. Single-Trial
    Analysis and Classification of ERP Components - a Tutorial. Neuroimage.
    2010
 
    Opgen-Rhein R, Strimmer K. Accurate ranking of differentially
    expressed genes by a distribution-free shrinkage approach. Stat Appl Genet Mol Biol. 2007;6:Article9. 
 
    EXAMPLE
 
    NOTE
    The approach by Opgen-Rhein may also be of use (see covshrinkKPM)
 
    DEVELOPER
    Marcel van Gerven (m.vangerven@donders.ru.nl)
Class Details
Superclasses dml.method
Sealed false
Construct on load false
Constructor Summary
slda shrinkage linear discriminant analysis. 
Property Summary
Sigma covariances 
Sinv inverse of joint covariance matrix 
indims dimensions of the input data (excluding the trial dim and time dim in time series data) 
lambda regularization parameter (automatically determined) 
mu means 
pi priors 
restart when false, starts at the previously learned parameters; needed for online learning and grid search 
shrinkage 'diaguneq' or 'diagcommon' 
verbose whether or not to generate diagnostic output 
Method Summary
  model this method does not return a model 
  test compute discriminant functions d 
  train