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ERP components reveal the when and where
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Different functions in different brain areas.
The brain is a hierarchical functional network.

Serial/sequential and parallel processing at different times/latencies in different
areas.

ldentifying the latency and topography of ERP components helps to disentangle
functional networks.



One channel, all time points

When does specific brain activity start (in one condition)?

When is the activity different between conditions?
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All channels, one time point

What is the topographic distribution (in one condition) at latency t ?

What is the topographic distribution of the difference at latency t ?
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ERP difference waves to localize face-selective brain areas

The N170 is an ERP response | &,

specific for faces, when SN - -
. i g — ;

contrasted to other visual o\ S aces 9 - ,.

stimuli. rr
== Cars E\
E.,,_..

The N170 originates from
the fusiform face area
(FFA) which is located on
the ventral surface of the
brain.

Kuefner et al. (2010), https://doi.org/10.3389/neuro.09.067.2009



https://doi.org/10.3389/neuro.09.067.2009

Localizing and understanding the ERP

If you find a ERP component, you want to characterize it in physiological terms
Time or frequency are the “natural” characteristics
“Location” requires interpretation of the scalp topography

Forward and inverse modeling helps to interpret the topography

Forward and inverse modeling helps to disentangle overlapping source timeseries



ERP topographies — colors and contour lines




Forward models and ERP topograpies






Biophysical source modelling: overview

forward model

\ 4

physiological source body tissue observed
electrical current volume conductor potential or field

A

inverse model
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What produces the electric current




Equivalent current dipoles
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Volume conductor

described electrical properties of tissue

describes geometrical
model of the head

describes how the currents flow, not
where they originate from

same volume conductor for EEG as for
MEG, but also for tDCS, tACS, TMS, ...



Volume conductor

Analytic computational methods for volume conduction problem for simple
geometries, like a sphere.

Numerical computational methods for volume conduction problem allow for
realistic geometries.

BEM = Boundary Element Method
FEM = Finite Element Method



Volume conductor: Boundary Element Method

Each compartment is
homogenous
isotropic

Important tissues
skin
skull

brain
(CSF)

Triangulated surfaces describe
boundaries
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Volume conductor: Boundary Element Method

Construction of geometry
segmentation in different tissue types

extract surface description
downsample to reasonable number of triangles
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Volume conductor: Boundary Element Method

Construction of geometry

segmentation in different tissue types
extract surface description
downsample to reasonable number of triangles

BEM computation of the volume conduction model
independent of source model



Volume conductor: Finite Element Method

Tesselation of 3D volume in
tetraeders or hexaheders




Volume conductor: Finite Element Method

hexaheders

tetraeders



Volume conductor: Finite Element Method

Tesselation of 3D volume in
tetraeders or hexaheders

Each element can have its own conductivity

FEM is the most accurate numerical method but computationally quite expensive

Geometrical processing not as simple as BEM



EEG volume conduction

Potential difference between electrodes corresponds to current flowing through
skin

Only tiny fraction of current passes through skull

Therefore the model should describe the skull and
skin as accurately as possible



Magnetoencephalography (MEG)
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MEG volume conduction

MEG measures magnetic field over the scalp

Magnetic field itself is not distorted by skull

Only tiny fraction of current passes through skull, therefore the model can ignore
the skull and skin

Magnetic field from ECDs but also from the volume currents
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Biophysical source modelling: overview

forward model

physiological source body tissue observed
electrical current volume conductor potential or field

A

B L]
L ny
oet® e



Inverse localization: demo






Inverse methods

Single and multiple dipole models

Minimize error between model and measured potential/field

Distributed source models

Perfect fit of model to the measured potential/field
Additional constraint on source smoothness, power or amplitude

Spatial filtering
Scan the whole brain with a single dipole and compute the filter output at every location
Beamforming (e.g. LCMV, SAM, DICS)
Multiple Signal Classification (MUSIC)
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Dipole fitting

I3 %am it 3 D)

Dipole 6, Time: 0.080s, GOF: 56.9, Amplitude: 39.6nAm
(-56.9, -19.7, 26.1) mm

IC 1 from ERP 100ms, fit with a single dipole (RV 9.5%) (9.5%)

100 100



Single or multiple dipole models - Parameter estimation

25 - y =f(x; a,b,c,...)
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Parameter estimation: dipole parameters

source model with

few parameters
position
orientation
strength

compute the model data

minimize difference
between actual and model
data

1



Dipole model: linear estimation

Y=LX;+L,X,+...+L X +noise

Y =LX + noise

Y is the data, for example 64x500 samples

L is the leadfield matrix, for example 64x3

X is the strength of the source, for example 3x500

The noise is the same size as the data

The leadfield L depends on the position of the source
We compare the model data Y with the measured data



Non-linear parameters

grror({) = _ (Yi(Q—Vi) — min(error(é’))
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Non-linear parameters: grid search

One dimension, e.g. location along medial-lateral
100 possible locations

Two dimensions, e.g. med-lat + inf-sup
100x100=10.000

Three dimensions
100x100x100 = 1.000.000 = 10°

Two dipoles, each with three dimensions
100x100x100x100x100x100 = 10"



Non-linear parameters: gradient descent optimization
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Single or multiple dipole models - Strategies

Single dipole:

scan the whole brain, followed by iterative optimization
Two dipoles:

scan with symmetric pair, use that as starting point for iterative optimization
More dipoles:

sequential dipole fitting



Sequential dipole fitting
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Sequential dipole fitting

local currents overlap at scalp topographies

o "

propagation scalp waveforms rotating maps !

BESA manual



Sequential dipole fitting

source model: 1 : scalp waveforms
- relocate dipole
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Sequential dipole fitting

source model: 2

head model

source waveforms scalp / residual
model ~ scalp
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Sequential dipole fitting to explain spread of activity

I”

Assume that activity starts “smal
explain earliest ERP component with single equivalent current dipole

Assume later activity to be more widespread
add ECDs to explain later ERP components
estimate position of new dipoles
re-estimate the activity of all dipoles

lterative and interactive (hence subjective) process
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Distributed source models and beamforming

With dipole fitting we assume a single or a few point like sources (ECDs)

But what if we assume that there can be activity distributed over the whole brain?



Distributed source models and beamforming

50 100 150 50 100 150 200

voxel 3004576, indices [157 108 77]
spm coordinates 6.0 -19.0 4.0l mm
value 0.937709

atlas labal: NA

50 100 150




Distributed source models and beamforming

Position of the source is not estimated as such
We can assume a pre-defined grid (3D volume or on cortical sheet)

We can estimate the strength at every location

In principle easy to solve, however...
More “unknowns” than “knowns”

Infinite number of solutions can explain the data perfectly
Additional constraintsor assumptions are required



Distributed source model




Distributed source model




Distributed source model: linear estimation

Y=L X, +LX,+. +. +. o+ 0+ 0+ + .0+ L X +Nnoise
Y =LX + noise

Y is the data, for example 64x500 samples

L is the leadfield matrix, for example 64x8000

X is the strength of the source, for example 8000x500

We now have to estimate 8000x500 parameters, from 64x500 data points
This is an overdetermined linear system



Distributed source model: linear estimation

distributed source model with
many dipoles throughout the
whole brain

estimate the strength of all
dipoles

data and noise can be perfectly
explained

30

25

20

> 15

10




Distributed source estimation

To find a unique solution to the overdetermined problem we make additional
assumptions.

The general assumption is that we want to have the “simplest” solution, so the
solution with the minimal overall “norm”.

The “norm” expresses the overall amplitude or power of all the sources distributed
in the brain.

We compute the Minimum Norm Estimate (MNE).

We can use additional assumptions about the noise and distribution.



Beamforming

With beamforming we also assume that there can be activity everywhere in the
brain.

Rather than computing the activity at all locations simultaneously, we compute it for
each location seperately.

We scan the whole brain, and for each location we compute a “spatial filter”.

This also requires extra assumptions: that the sources are uncorrelated, which is not
always the case in reality.



Which source localization method to use

Dipole fitting
Distributed source estimation using MNE
Distributed source estimation using beamforming

Each of them has different assumptions on the actual sources.

Your data is different from others’ data, so the method that is best for you might be
different as well.

Let’s discuss some practical guidelines for selecting a method...



Localizing and understanding the ERP

If you find a ERP component, you want to characterize it in physiological terms
Time is the “natural” characteristic of the ERP
“Location” requires interpretation of the scalp topography

Forward and inverse modeling helps to interpret the spatial distribution
Forward and inverse modeling helps to disentangle overlapping source timeseries
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Localize and disentangle the source activity
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