

Source reconstruction using beamformers

Tzvetan Popov MEEG toolkit 21.04.2015

Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, The Netherlands

t.popov@donders.ru.nl

Separating sources

- Use the temporal aspects of the data at the channel level
 - ERF latencies
 - (ERF difference waves)
 - Filtering the time-series
 - Spectral decomposition
- Use the spatial aspects of the data

How did the brain get these red and blue blobs?

• This lecture will explain how you get from:

Superposition of source activity

- Varying "visibility" of each source to each channel
- Timecourse of each source contributes to each channel
- The contribution of each source depends on its "visibility"
- Activity on each channel is a superposition of all source activity

Source modelling: overview

physiological source electrical current body tissue volume conductor observed potential or field

inverse model

Inverse methods

- Single and multiple dipole models
 - Assume a small number of sources
 - Where (& how many) are the strongest sources?

- Distributed dipole models
 - Assume activity everywhere
 - What is the distribution of activity over the brain?

- Spatial filtering
 - Assume that the time-courses of different sources are uncorrelated
 - What is the likelihood for activity at a given brain location?

0

Data model

$$X = h_1 s_1 + h_2 s_2 + ... + h_n s_n + noise$$

Inverse methods

- Single and multiple dipole models
 - Minimize error between model and measured potential/field

0

Data model

$$X = h_1 s_1 + h_2 s_2 + ... + h_n s_n + noise$$

n is typically small.

$$(X - h_1s_1 - h_2s_2 - ... - h_ns_n) = noise$$

Inverse methods

- Single and multiple dipole models
 - Minimize error between model and measured potential/field
- Distributed dipole models
 - Perfect fit of model to the measured potential/field
 - Additional constraint on sources
 - Maximal smoothness (LORETA)
 - Minimum power (L2)
 - Minimum amplitude (L1)

Data model

$$X = h_1 s_1 + h_2 s_2 + ... + h_n s_n + noise$$

n is typically large. (> # channels)

$$X = h_1s_1 + h_2s_2 + ... + h_ns_n + noise$$

 $H^{-1}(X - noise) = S$

Inverse methods

- Single and multiple dipole models
 - Minimize error between model and measured potential/field
- Distributed dipole models
 - Perfect fit of model to the measured potential/field
 - Additional constraint on sources
 - Maximal smoothness (LORETA)
 - Minimum power (L2)
 - Minimum amplitude (L1)
- Spatial filtering
 - Compute the filter output at every location
 - Scan the whole brain with a single dipole
 - Beamforming (e.g. LCMV, SAM, DICS)
 - Multiple Signal Classification (MUSIC)

O'

Data model

$$X = h_1s_1 + h_2s_2 + ... + h_ns_n + noise$$

 $X = (h_1s_1 + h_2s_2 + ...) + h_ns_n + (noise)$
 $X = h_ns_n + N$

N = all activity not coming from n, assuming N uncorrelated with s_n

Fieldtrip functions for source localization

Source localization

- Different algorithms on the market
- Several of these are implemented in FieldTrip

```
cfg = [];
source = ft_dipolefitting(cfg, data);
  cfg = [];
  cfg.method = 'mne';
     cfg = [];
      cfg.method = 'lcmv';
                                                        Beamformers
  source cfg: = [];
cfg:method = 'dics';
      source = ft_sourceanalysis(cfg, data);
         source = ft_sourceanalysis(cfg, freq);
```


Procedure beamforming of oscillatory activity

Stage 1: Design experiment

- Baseline recommendable
- Sufficient length of stationary signal
 - Delayed response
- Avoid artifacts
 - Eyeblink stimulus
 - Experiment not too long, or introduce breaks (muscle artifacts)

Stage 2: Measuring brain activity

- Record EOG and ECG to remove artifacts
- Measure positions sensors/electrodes in relation to head
- Reduce head movement (MEG)
- Make anatomical MRI scan for realistic head model and optimal normalization over subjects
- Perform if applicable and possible localizer task

Stage 3: Data analysis: Preprocessing

- Data segmentation
- Artifact removal

Frequency resolution 1 Hz

Bandwidth: 9.5 – 10.5 Hz

Recap: multitapers

Donders Institute

- More tapers for a given time window will result in more spectral smoothing
- Several orthogonal tapers are used for the time window, subsequently the power (and phase) is calculated for each tapered data segment and then combined.

Beamformer: the question

- What is the activity of a source **s**, at a location **r**, given the data **x**?
- Note: the explanation is in the time domain, because that is more intuitive
- We estimate s with a spatial filter w

Beamformers: the concept

And then: creating the blobs

Beamformer ingredients (how to compute w)

Forward model

- Predict the data from a source at a given location
- Ensures specificity in space (spotlight)

Experimental data

- Experimental contrast / active versus baseline
- Ensures selectivity for effect of interest

Forward model

- How is a source 'seen' by the sensor-array?
- Given a source **s** at location **r** (and orientation η), what is the data **x**?

Forward model

- How is a source 'seen' by the sensor-array?
- Given a source **s** at location **r** (and orientation η), what is the data **x**?

Sensor positions

– Where is the brain with respect to the sensors?


```
Tokasi4
Februaria
```

```
figure;
hold
ft_plot_sens(data.grad);
ft_plot_vol(vol);
hs = ft_read_headshape('hs_file');
ft_plot_headshape(hs);
```


Sensor positions

- Where is the brain with respect to the sensors?
- Position of the head in the MEGhelmet


```
cfg = [];
cfg.method = 'dics';

.
source = ft_sourceanalysis(cfg, freq);

freq.grad

freq.grad.coilpos = [Mx3]
freq.grad.coilori = [Mx3]
freq.grad.label = {Nx1}
freq.grad.tra = [NxM]
```


- Positions of the potential sources
 - Which locations do you want to 'scan'?

ft prepare sourcemodel

- Volume conductor model
 - What is the shape of the volume in which current is flowing?

ft prepare sourcemodel

ft_prepare_headmodel

Forward model

h = leadfield matrix

Beamformer: the question revisited

- What is the activity of a source s, at a location r, given the data X?
- We know how to get from source to data: X = h * s
- We want to go from data to source: w^T * X = \$
- w^T is called a spatial filter

Sensitivity of a spatial filter

Concept of a spatial filter

Estimated source activity

Sensitivity of a spatial filter

Beamformer: the question revisited

- What is the activity of a source s, at a location r, given the data X?
- We know how to get from source to data: X = h * s
- We want to go from data to source: w^T * X = \$
- w^T is called a spatial filter

Beamformer: the question revisited

- What is the activity of a source **s**, at a location **r**, given the data **X**?
- We know how to get from source to data: X = h * s
- We want to go from data to source: w^T * X = \$
- w^T is called a spatial filter

What would we like a spatial filter to do?

Adaptive spatial filter: minimum variance constraint

Beamformer ingredients

- Forward model
 - Volume conduction model (typically using MRI)
 - Sensor positions
 - Points to 'scan': regular grid, cortical sheet, etc.
- Experimental data
 - Time domain: covariance
 - Frequency domain: cross-spectral density


```
freq.grad

freq.grad.coilpos = [Mx3]
  freq.grad.coilori = [Mx3]
  freq.grad.label = {Nx1}
  freq.grad.tra = [NxM]
```



```
freq.freq
freq.crsspctrm
freq.powspctrm
freq.labelcmb
freq.label
```

```
cfg = [];
cfg.method = 'dics';
cfg.grid = sourcemodel;
cfg.vol = headmodel;
.
source = ft_sourceanalysis(cfg, freq);
```


Strengths of beamforming

Suitable for SPM-like statistics

Because source estimation at each point independent of other points

(Most often) beamforming more spatially focal than distributed source (min norm) methods

No a priori assumptions about amount of sources or locations of sources

Limitation of beamforming

Sources should not be too correlated

Limitation of beamforming


```
cdfg == [[];
cdfg ccovariance='yes';
cdfg ccovariancewindow == [[-22.22];
aavg == ffttimebockanalysis(cdfg;tlk);
```

```
cfg = [];
cfg.method = 'lcmv';

.
source=ft_sourceanalysis(cfg, avg);
```


Contrasting conditions with beamforming

Q: How can I compare different datasets on the source level?

- 1) The solution of the beamformer is a unique spatial filter
 - a. For a specific subject (morphology)
 - b. For a specific dataset (current-source density or covariance)

multiple datasets

(e.g. conditions / trials)

Contrasting conditions with beamforming

- Q: How can I compare different datasets on the source level?
 - 1) The solution of the beamformer is a unique spatial filter
 - 2) Although you can use the same data to make the filter <u>and</u> project to source level
 - a. often a common filter is calculated across conditions (using <u>the same</u> dataset)

b. only the output of <u>different</u> datasets through <u>the same</u> filter are

compared statistically

Slide courtesy Stephen Whitmarsh

Summary

Beamforming

- Scanning method, each point is estimated independently
- Inverse modeling by spatial filter
 Unifies two constraints:
 - (1) pass all activity at location of interest while
 - (2) suppressing as much activity (i.e. noise, other sources) as possible Makes use of covariance of data, and forward model
- Both possible in time and frequency domain
- No a priori assumptions about source configurations
- Applicable in very many scenarios
 Except when you have good reason to expect strongly correlated sources

